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Reciprocity theorem and perturbation theory for photonic crystal waveguides
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Starting from Maxwell’s equations we derive a reciprocity theorem for photonic crystal waveguides. A set of
strongly coupled discrete equations results, which can be applied to the simulation of perturbed photonic
crystal waveguides. As an example we analytically study the influence of the dispersion of a two level system
on the band structure of a photonic crystal waveguide. In particular, the formation of polariton gaps is dis-
cussed.
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Photonic crystals~PCs! are regarded as a very promisin
and variable material base of a future photonic integration
particular photonic crystal waveguides~PCWs!, which are
aligned defects in PCs, allow for an efficient transport
optical signals in highly integrated all-optical circuits. Mod
of straight PCWs are determined by band structure calc
tions @1,2#. However, to analyze the field evolution in pe
turbed, bent, or mutually interacting PCWs, the complete
of Maxwell’s equations has to be solved via a finite diffe
ence time domain~FDTD! scheme@3#. The latter is ex-
tremely time and memory consuming in particular beca
stationary states appear only in the limit of temporally in
nite calculations. Furthermore FDTD simulations do not
ten provide for a deeper insight into the physics of the inv
tigated structures. Therefore some simpler modeling or e
analytical descriptions of the field dynamics in perturb
PCWs are desirable.

Starting from a strict orthogonality relations for PCWs w
derive a set of simple evolution equations, which allow o
to determine the field distribution in a PCW for a fixed fr
quencyv and for given initial conditions. In analogy to th
derivation of the reciprocity theorem for convention
waveguides@4# we start from a set of stationary unperturb
electricEW 1 and magneticHW 1 fields, which serves as a refe
ence. These fields belong to an ideal Bloch mode with
Bloch vectorq1 and the shapesEW 15eWq1

(x,y,z)exp(iq1z) and

HW 15hW q1
(x,y,z)exp(iq1z), which propagate along the PCW

in thez direction. A second set of fields is subject to possi
perturbations, which influence respective electricalEW 2 and
magneticHW 2 fields via an additional polarizationPW pert. The
interaction is characterized by Maxwell’s equations such
rot(EW 2)5 ivm0HW 2 and rot(HW 2)52 iv«0«EW 22 ivPW pert,
where « defines the dielectric structure of the ideal unp
turbed photonic crystal waveguide. Both electromagne
fields are linked together by the following relatio
div(EW 23HW 1*1EW 1*3HW 2)5ivEW 1*PW pert. After integrating over one
unit cell @see the inset of Fig. 1~a!# and subsequent transfo
mations, we obtain

E E
surface

unit cell

~EW 23HW 1* 1EW 1* 3HW 2!dAW 5 ivE E E
volume
unit cell

EW 1* PW pertdV.
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In what follows we chose the boundaries of the unit c
extends perpendicularly to the original waveguide~x-y

plane!. For a vanishing perturbationPW pert50 the second field
can also be assumed to be a Bloch state with a wave num
q2 . Taking into account the periodicity of the Bloch stat
we obtain sin@(q12q2)L/2#*2`

1`dx*2`
1`dy@eWq2

3hW q1
* 1eWq1

*

3hW q2
#z50, whereL is the extension of the unit cell and onl

the z component of the respective vector products enters
integration. Because the actual position of a unit cell is ar
trary the integration can be performed on each fixedz. Con-
sequently an orthogonality relation for PCW modes at a fix
frequency can be expressed as

E
2`

1`

dxE
2`

1`

dy@eWq2
3hW q1

* 1eWq1
* 3hW q2

#z5dq1q2
s~q1!, ~2!

whered is the Kronecker symbol ands denotes the energy
flux in the respective mode. Going back to the general c
PW pertÞ0 we express the perturbed fieldsEW 2 andHW 2 as super-
positions of Bloch modesEW 25Sqaq(z)eWq(rW)1bq(z)eWq* (rW)

andHW 25Sqaq(z)hW q(rW)2bq(z)hW q* (rW). In the case of unper-
turbed waveguides the amplitudes of forward and backw
propagating fieldsaq(z) and bq(z) simplify to exp(6iqz).
But in the presence of a perturbation the dynamics of th
amplitudes changes. In order to obtain a respective evolu

FIG. 1. Unperturbed W1 photonic crystal waveguide~PCW! and
its sensitivity on perturbations,~a! band structure of a PCW; inse
scheme of a PCW;k: index of unit cells;L: period of the PC~b!
self-coupling and cross-coupling coefficients as a function of
Bloch vector; parameters: rods:«512, radius/L50.2.
©2003 The American Physical Society01-1
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equation we insert the mode expansion into the integ
equation~1! and make use of the discrete translational sy
metry of the Bloch modes. In so doing we obtain a set
discrete equations

aq@~k11!L#exp@2 iq~k11!L#2aq@kL#exp@2 iqkL#

5
iv

s~q!
E

2`

`

dxE
2`

`

dyE
kL

~k11!L
dzeWq* PW pertexp~2 iqz!,

~3!
bq@~k11!L#exp@ iq~k11!L#2bq@kL#exp@ iqkL#

52
iv

s~q!
E

2`

`

dxE
2`

`

dyE
kL

~k11!L
dzeWqPW pertexp~ iqz!,

where we have assumed thekth unit cell to extend between
kL<z5(k11)L. Equations~7! can be used to describe
variety of problems with linear and/or nonlinear perturb
tions. The most significant frequency dependence is inco
rated into the Bloch vectorq(v). For an infinitesimally
small period of the PC (L→0) Eqs.~3! pass over to the wel
known coupled mode equations for conventional wavegui
of integrated optics@4#. Besides the discrete nature of Eq
~3! there is a further essential difference between the cou
mode equations of PCWs and conventional waveguides.
conventional waveguides the coupling between forward
backward propagating fields can usually be neglected,
cause of the big mismatch between respective propaga
constants. In contrast, arbitrary perturbations induce a str
coupling between forward and backward modes in PCW
especially close to theG point.

To demonstrate some applications of Eq.~3! we investi-
gate the influence of the material dispersion on the b
structure of a PCW. Conventional band structure calculati
@1,2# usually neglect the frequency dependence of the die
tric function. Nowadays there are efficient numerical me
ods to include the dispersion of the media, such as the tr
fer matrix method @5# or a plane wave formalism@6#.
Nevertheless for a deeper physical insight into the influe
of dispersion on the band structure of a PCW, analytical
vestigations are helpful. Provided that the dispersion of« can
be regarded as a perturbation the discrete coupled m
@Eqs. ~3!# can be applied. Here we assume homogeneo
distributed two level dopants, as e.g., quantum dots with

D«~v!5
f ~v02v!

~v02v!21g2 ,

where the induced perturbation polarization readsPW pert
5«0D« baq(z)eWq(rW)1bq(z)eWq(rW)* c. Equation ~3! suggests
concentrating on a set of discrete amplitudes, which
given at the boundaries of the elementary cell
Ak5aq(kL) and Bk5bq(kL). Assuming that deviations
from a Bloch wave are small we approximate the fie
within the kth unit cell by respective values at th
boundaries as

aq~z!'$Ak exp~2 iqkL!1Ak11

3exp@2 iq~k11!L#%/2 exp~ iqz!
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bq~z!'$Bk exp~ iqkL!1Bk11 exp@ iq~k11!L#%/2

3exp~2 iqz!.

In this way we map the evolution on a discrete set of fiel
Now Eqs.~3! simplify to

Ak11 exp~2 iqL !2Ak5 ik@Ak1Ak11 exp~2 iqL !#

1c@Bk1Bk11 exp~ iqL !#,
~4!

Bk11 exp~ iqL !2Bk52 ik@Bk1Bk11 exp~ iqL !#

1c* @Ak1Ak11 exp~2 iqL !#,

where the parameters in Eqs.~4! are proportional to the di-
electric function of the perturbationk5D«k8, c5D«c8.

k85
v«0

2s~q!
E

2`

`

dxE
2`

`

dyE
0

L

dzueW u2

is the coefficient of the self-coupling and

c85
iv«0

2s~q!
E

2`

`

dxE
2`

`

dyE
0

L

dzeW* 2 exp~22iqz!

represents the cross-coupling between forward and backw
propagating waves. Both coefficients are exclusively de
mined by the band structure of the unperturbed PCW and
not depend on the perturbation. They describe the sensit
of the PCW on spatially homogeneous perturbations@see
Fig. 1~b!#. Equation~4! can be rewritten in a matrix repre
sentation as

S Ak11

Bk11
D5M̂ S Ak

Bk
D ,

~5!

M̂5
1

11k22ucu2

3S b~11 ik!21ucu2cexp~ iqL ! 2c exp~ iqL !

2c* exp~2 iqL ! @~12 ik!21ucu2#exp~2 iqL !
D .

Although spatially homogeneous, the perturbation coup
forward and backward propagating modes. Conseque
new eigenmodes appear which can be expressed in term
the unperturbed ones. To do so we have to determine ei
values and eigenvectors of the matrixM̂ . Finally we express
each field in the perturbed PCW as a linear combination
these new modes as

S Ak

Bk
D5a1l1

k S 1
e1

D1a2l2
k S 1

e2
D , ~6!

with l656A@Re(h)#2211Re(h),

e65
11k22ucu2

2c
@6A@Re~h!#2212 i Im~h!#exp~2 iqL !,
1-2
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and

h5
~11 ik!21ucu2

11k22ucu2
exp~ iqL !.

a6 are the amplitudes of the forward and backward pro
gating modes. Two cases have to be distinguished:
Re(h)<1 the eigenvalues of the new modes are comp
l65Re(h)6iA12@Re(h)#2, with an absolute value of 1
Therefore they can be expressed asl65exp(iqpertL), where
the Bloch vector of the perturbed waveguideqpert reads
qpert5arctan@A12Re(h)2/Re(h)#/L. Hence, the field evolu-
tion is characterized by a simple phase evolution of resp
tive modes. In contrast foruRe(h)u.1 eigenvalues becom
purely real. Thus the former propagating modes pass ove
an evanescent behavior. Figure 2 shows a comparison o
analytical theory with band structure calculations for t
PCW displayed in Fig. 1~a!. Obviously the results obtaine
with exact numerical calculations and with our quasianal
cal perturbation theory coincide very well.

In order to study the effect of self- and cross-coupling
the band structure of perturbed PCWs we look at some
iting cases. Let us first assume a vanishing cross-coup
c850. In this case the eigenvalues have the simple form

l65
16ik

17 ik
exp~6 iqL !,

with an absolute value of 1. Therefore self-coupling exc
sively leads to a change of the Bloch vector and theref
causes ashift or a deformationof the original band. In con-
trast for dominant cross-coupling (k850) the eigenvalues
reads

l65
11ucu2

12ucu2
cos~qL!6AF11ucu2

12ucu2
cos~qL!G2

21

At qL5p/2 the Bloch vector remains at the same value, i
the new eigenvalue isl656 i . But, evanescent waves sym
metric toqL5p/2 will occur at Bloch vectors, for which

U11ucu2
2 cos~q6

evenL !U>1

FIG. 2. Bloch vectorqpert of the mode of the PCW displayed i
Fig. 1 as a function of the perturbationD« for a set of fixed fre-
quencies~solid line: analytical theory; points: numerical simul
tion!.
12ucu
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is yielded. Thus cross-coupling leads to the emergence
evanescent waves and therefore causes bandshrinkage. Now
let us have a closer look at the symmetry points of the
lattice. At theG point both coefficients diverges forq→0
@see Fig. 1~b!#. A similar behavior is observed at theX point.
The reason is the normalization of the field by means of
energy fluxs(q) which goes to zero at symmetry point. A
expansion of the self- and cross coupling in a small nei
borhooddq of the symmetry point yields:k5a/dq1¯ and
c5 ia/dq1¯ , where

a5
D«

g2

v~q50,p/L !«0

4U~q50,p/L !
E

2`

`

dxE
2`

`

dyE
0

L

dzueW~q

50,p/L !u2.

U(q) is the spatially averaged electromagnetic energy d
sity andg2 is the curvature of the band at the correspond
symmetry point v(q50,p/L1dq)5v(q50,p/L)
1g2(dq)21¯ . For a first order approximation of the e
genvalues indq and D« close to the symmetry points on
gets l6(q50)5122aL6A@122aL#221 and l6(q
5p/L)52112aL6A@122aL#221. Therefore, evanes
cent waves occur for any negativea factor, i.e., if the change
of the dielectric functionD« and the curvatureg2 of the band
have opposite signs. As a consequence any negative~posi-
tive! D« perturbation will shift the mode to higher~lower!
frequencies provided the curvature of the band is posi
~negative!. In other words, a band with a positive~negative!
curvature at a symmetry point is sensitive for the emerge
of evanescent waves close to this symmetry point if an ne
tive ~positive! D« perturbation occurs. Figure 3~a! illustrates
this fact for the PCW of Fig. 1~a!. The shaded regions rep
resent evanescent waves whereas the white region stand
propagating ones. One clearly sees that close to theG point
the band is sensitive for the emergence of evanescent w
if an negativeD« perturbation occurs, because the curvatu
of the band is positive atq50. In the center of the band i

FIG. 3. Photonic crystal waveguide in the presence of a t
level polarization perturbation,~a! sensitivity of the band for the
emergence of evanescent waves due to an homogeneous per
tion of the dielectric function«, shaded region: evanescent wave
none-shaded region: propagating waves,~b! Comparison of the
band structure in the presence of a two level polarization pertu
tion ~thick lines! with an unperturbed band structure~thin, dashed
line!; lower curves: two level resonance close to theG point (v0

50.32); upper curves: two level resonance close to the bounda
the band (v050.415); parameters: same as in Fig. 1,g57.7e-3,
f 57.7e-3.
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becomes rather insensitive for any kind of perturbati
whereas the sensitivity for positiveD« perturbation increase
for larger Bloch vectors. The reason for this is that the ba
now has a negative curvature and becomes close to thX
point.

Consequently polaritons can have a considerably diffe
influence@7,8# on the band structure. Although propagati
can be suppressed due to strong absorption in the cent
the resonance@shaded area in Fig. 3~b!# additional gaps can
open up. If the two-level resonance is close to theG point a
polariton gap occurs even for a very small oscillati
strength. It emerges above the two level resonance bec
the band is very sensitive for any negativeD« @see Fig. 3~b!#.
For a two level resonance in the center of the PCW ban
rather huge oscillation strength is required to create a g
and in most cases only a slight deformation of the band
observed. Again a two level resonance close to the up
band edge~X point! of the PCW mode creates a polarito
e-
,

06560
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gap, but for positiveD«, i.e., below the resonance frequen
@see Fig. 3~b!#, opposite to polaritons in homogeneous med
@9#. In addition, new propagating Bloch modes may app
for Bloch vectors at the edge of the Brillouin zone~close to
the X point! where the unperturbed PCW has no bou
eigenmodes.

In conclusion, we have derived a reciprocity theorem a
an orthogonality relation for photonic crystal wavegui
modes. A set of strongly coupled, discrete equations is c
structed, which can be applied to the simulation of vario
types of perturbed PCWs. As an example, we studied
influences of polaritons on a PCW band structure anal
cally. The eigenmodes of the PCWs were computed using
freely available software package of MIT@1#.
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